
Synergia: Driving Massively Parallel Particle
Accelerator Simulations with Python

Q I M I N G L U , J A M E S A M U N D S O N A N D E R I C S T E R N
F E R M I N A T I O N A L A C C E L E R A T O R L A B O R A T O R Y

A C C E L E R A T O R S I M U L A T I O N PA C K A G E
W H A T: S Y N E R G I A

• Designed for range of computing resources

• Laptops and desktops
• Clusters
• Supercomputers
• GPU/Intel MIC  

acceleration platforms

• Beam dynamics

• Independent-particle
• Collective effects

S Y N E R G I A
W H O : P E R S O N N E L

is developed and maintained by the

A C C E L E R AT O R S I M U L AT I O N G R O U P
S C I E N T I F I C C O M P U T I N G D I V I S I O N

F E R M I L A B

James Amundson, Paul Lebrun, Qiming Lu, Alex Marcidin,  
Leo Michelotti (CHEF), Chong Shik Park, (Panagiotis Spentzouris),  

and Eric Stern

ComPASS
A SciDAC project

P H Y S I C S
W H A T: S Y N E R G I A

• Single-particle physics

• Provided by CHEF C++ library
• Direct symplectic tracking, and/or arbitrary-order polynomial maps

• Apertures

• Collective effects (single and multiple bunches)

• Space charge
• Wake fields
• Electron cloud, Beam-beam to be developed

T E C H N I Q U E S
W H A T: S Y N E R G I A

• Split-Operator

Allows to approximate the evolution operator for a time t by

!

• Particle-in-Cell

Allows to simulate the large number of particles in a bunch (typically
O(1012)) by a much smaller number of macro-particles (O(107)).
Collective effects are calculated using fields calculated on discrete
meshes with O(106) degrees of freedom

single- 
particle  
optics

collective 
effects

split-operator 
methods

H=Hsp H=HcollH=Hsp+Hsp

PA R A L L E L S C A L I N G
W H A T: S Y N E R G I A

Number of Cores

Ti
m

e
to

 S
ol

ut
io

n
(s

)

1e0

1e1

1e2

1e3

1e4

16 32 64 128 256 512 1k 2k 4k 8k 16k

Propagate Total (actual)
Propagate Total (ideal)
Collective Ops.
Independent Ops.
Charge Deposition

BG/P (Intrepid) Cores

Ti
m

e
to

 S
ol

ut
io

n
(s

)

0

5

10

15

20

25

30

8192 16384 32768 65536 131072

64 128 256 512 1024

bunches

Ideal
Actual

Number of Cores

Ti
m

e
to

 S
ol

ut
io

n
(s

)

0

2

4

6

8

10

12

14

16

18

20

128 256 512 1k 2k 4k 8k 16k 32k

1 2 4 8 16 32 64 128 256
Number of Particles (in Million)

Ideal
Actual

Single-bunch strong scaling 
16 to 16,384 cores

32x32x1024 grid, 105M particles
Weak scaling from  
64 to 1024 bunches

8192 to 131,072 cores

Weak scaling from  
1M to 256M particles
128 to 32,768 cores

Benchmarks on ALCF's
Intrepid (BG/P) and Mira (BG/Q)

P R O D U C T I O N
W H A T: S Y N E R G I A

• Synergia 1 was a combination of
IMPACT (F90) and CHEF (C++) +
fronted (Python)

• Synergia 2 started as a proof-of-
concept for a Python driver.
Design heavily influenced by
IMPACT and Fortran. Evolved its
own C++ space charge solvers

• Synergia 2.1 developed into a
robust, pure-C++ class structure
with a Python-C++ interface

W H A T: S Y N E R G I A

E V O L U T I O N

W H Y P Y T H O N ?
S Y N E R G I A

• Realistic accelerator simulations require a very complicated
description of simulation parameters

• Using Python as a driver gives the end user access to a full
programming language to use in simulation description

• We did not have to develop and maintain a new language
• End users do not have to learn YASPL (yet another single-purpose

language)

• Capable of creating dynamic simulations including time-
varying machine parameters and active feedback

E X A M P L E 1 — A C T I V E D A M P I N G

W H Y P Y T H O N

Toy example of real-world application

A C C E L E R AT O R  
R I N G

Beam Position  
Monitor

Momentum
Kicker

x

Counteract instabilities induced by wakefield

E X A M P L E 1 — A C T I V E D A M P I N G

W H Y P Y T H O N

E X A M P L E 2 — M U 2 E

W H Y P Y T H O N

• Real example of real-world application

• Resonant extraction scheme for mu2e  
experiment at Fermilab

• Extraction for experiment requires
ramping of magnet strength to move
selected particles onto resonance

E X A M P L E 2 — M U 2 EW H Y P Y T H O N

W H Y N O T P Y T H O N ?
S Y N E R G I A

Portability
Shared libraries

Everyone says they support shared libraries.
In practice, shared versions of installed
libraries rarely available on HPC platforms

Cross-compilation of Python

Package dependencies  
of Synergia

Debugging / Profiling
There are tools which support the

mixed Python-C++ application,
but choices are very limited

C + + C O R E C L A S S E S

S Y N E R G I A

Bunch, Lattice, Propagator,
Steps, Operators, Actions,
Diagnostics, and etc. C O L L E C T I V E

I N D E P E N D E N T

P R O PA G AT O R B U N C H

S T E P S

A C T I O N S

D
IA

G
N

O
STIC

S

R
A

M
PIN

G

ETC

O
PE

RA
TO

R

O
PE

RA
TO

R

O
PE

RA
TO

R

A P P L I E S L AT T I C E

Multiple dependencies on Boost:
MultiArray, shared_ptr,
Filesystem, Test, Python, Spirit
and Serialization

O N

P Y T H O N - C + + I N T E R F A C E

S Y N E R G I A

Boost Python: expose C++ interfaces to Python

• Classes can be wrapped straightforwardly, preserving inheritance
relations. Python classes can inhered from C++ classes

• C++ classes can call inherited methods in Python classes through
callbacks

• Overloaded C++ signatures can be translated to Python with a
minimum of effort

• Classes and shared pointers to classes can be interchanged
transparently at the Python level

P Y T H O N - C + + I N T E R F A C E

S Y N E R G I A

• C++ code looks like C++ code

• Python code looks like Python code

• C++ containers can be converted to native Python
containers with ease

• std::vector and std::list ==> Python list
• Boost.MultiArray ==> numpy arrays

• Minimal overhead, no need to copy the underlying data

P Y T H O N - C + + I N T E R F A C E

S Y N E R G I A

• MPI communicators are handled through a thin wrapper in  
C++ called Commxx

• In first version of Synergia mpi4py communicators are
convertible to/from Commxx objects

• Commxx evolves to accommodate the need for serializing/
reconstructing MPI communicators

• in python scripts, mpi4py calls MPI_Init() / MPI_Finalize()

S E R I A L I Z A T I O N

S Y N E R G I A

• Checkpointing is an important feature for large-scale simulation
applications

• Checkpointing by re-initialization is impractical for Synergia
• Synergia simulations can be dynamic
• it is really a library that end-users use to create their own applications

• Synergia uses an object serialization scheme that allows the state of
each of its object (including user defined Python objects derived
from Synergia) to be written to and/or restored from disk

S E R I A L I Z A T I O N

S Y N E R G I A

B O O S T . S E R I A L I Z AT I O N P Y T H O N . P I C K L E

C + + O B J E C T S P Y T H O N O B J E C T S

U S E R D E F I N E D P Y T H O N O B J E C T S  
D E R I V E D F R O M P Y T H O N W R A P P E D C + + O B J E C T S

S Y N E R G I A . P I C K L E _ H E L P E R

1 . P Y T H O N . P I C K L E : P Y T H O N O B J E C T - > P I C K L E S T R I N G
2 . B O O S T . S E R I A L I Z A T I O N : P I C K L E S T R I N G - > B I N A R Y O R X M L

(F U L LY A U T O M A T E D)

S E R I A L I Z A T I O N

S Y N E R G I A

S Y N E R G I A . P I C K L E _ H E L P E R

B O O S T . S E R I A L I Z AT I O N  
I N P R O PA G AT E _ A C T I O N S

“Python is wonderful.”

